
Mobile Offloading

Matti Kemppainen
kemppi@cs.hut.fi

17.10.2012
Otaniemi, Espoo

T-110.5121
Mobile Cloud Computing

Lecture Slides

Agenda

1.  Problem scope
2.  Overview of mobile computation offloading
3.  Appearance in application development
4.  Challenges
5.  Some first-hand experiences
6.  What next?
7.  Summary

Problem Description
Slide by Prof. Jukka K. Nurminen

Energy
Consumption

2000 2005 2010 2015 2020

Basic Use (calls, SMS)

New
Services

Email
Navigation

Multimedia
Social media Web

Battery
Capacity

•  less new services
•  more frequent battery

charging
•  physically larger battery
•  more energy-efficient

components
•  a breaktrough in battery

cell technology
•  a more clever way to

utilize the available
power

Mobile Phone Usage

Mobile Computation Offloading
Transfer of Execution of Computation Outside The Mobile Device

Surrogates

computation
= state +
metadata

results =
state +

metadata

Phone
Client
Local

Mobile Node

Server
Remote
Cloud

Augmenter
Computation Node

Some Application
Examples

Primary functionalities
•  speech, video processing…
Background tasks
•  web crawling, photo analysis…
Hardware augmentation
•  speedup with more resources, specialized resources…
Multiple execution paths
•  artificial intelligence, different analysis methods…

Chun & Maniatis, 2009
Augmented Smartphone Applications Through Clone Cloud Execution

Gaining Benefit
End User’s Perspective

Offloading is beneficial, if

the related overhead costs
are less than

the cost of computation done locally.

Kumar & Lu, 2010
Cloud Computing for Mobile Users: Can Offloading Computation Save Energy?

Motivation…

Saving Energy

Enhancing Reliability

Enabling Performance

Exploiting Context

Easiness for Application
Developers

…Constraints

Monetary Cost

Security and Trust

Code Migratability,

Limits of Automation

Key Features of Offloading Frameworks

Migration Support
•  no need for application-specific networking protocols

Offloading as an Alternative
•  Remote execution is an opportunistic alternative, not a must.
•  Offloading is an optimization method, not a requirement.

Dynamic Decisionmaking
•  Environmental conditions may have an effect on the execution

location.

Offloading Framework Architectures
Levels of Offloading

Feature
•  idea: implement features and use them through an interface
•  example: a typical network-enabled mobile application
Method
•  idea: execute resource-hungry methods remotely
•  example: AI analysis of game logic
System
•  idea: clone the runtime environment (or the relevant parts)
•  example: everything that might run on a system

Feature Offloading
Architecture

offload sematically coherent parts of the application

Cuckoo (Android)
Vrije Universiteit, Amsterdam

Requirements: Standard Dalvik VM and Android software stack
1.  Developer defines an interface (in AIDL) for the part of the

application that is subject to offloading.
2.  Building system generates the needed implementation stubs and

proxies.
3.  Developer implements the features. Local and remote

implementations may differ.

Elastic Application Architecture
Feature Offloading

Zhang et al., 2011
Towards an Elastic Application Model

for Augmenting Computing Capabilities of Mobile Platforms

Method Offloading
Architecture

offload method calls including needed data

Example: MAUI (.NET)
Duke, U. Mass. Amherst, UCLA, Microsoft Research

Requirements: Standard .NET software stack
1.  Developer annotates the desired methods as remoteable.
2.  Framework considers offloading of the remoteable methods. It may

also choose to invoke a method locally.

Image Offloading
Architecture

offload bytecode, program image or even volume image

CloneCloud (Android)
Intel Labs, Berkeley

Requirements: A custom version of Dalvik VM
1.  Developer lets the underlying system make partitioning and offloading

decisions.

Architecture Comparison

Abstraction
Level

Developer
Workload

Level of
Automation

Need for Platform
Support

Feature +++
high

+
medium

-
not needed

Method +
medium

++
medium

?
depends

System -
low

+++
high

+++
necessary

Migration of
Process State

Data transfer costly
•  Transfer as little as possible
Serializability
•  Data needs to be transferrable (e.g. hardware driver cannot

be offloaded)
•  Class inheritance may pose considerable problems
Complexity of Automation
•  What is the needed dataset?

Decisionmaking

Prior Analyses

Developer’s Decisions

Application Profiling
•  CPU usage, memory

consumption
•  network usage
•  disk I/O

Use-case Profiling

Runtime Analyses

User’s decisions

Environment Profiling
•  hardware resources,

network availability…

Action Monitoring
•  feedback-driven controlling

of offloading process

Optimization Problem

Kovachev et al, 2011
Mobile Cloud Computing: A Comparison of Application Models

Infrastructure
Where to Offload?

Runtime environment for the migrated code
•  different implementations or a common software stack?
Cloud services
•  virtualization as a way to providing a suitable environment
Networking performance
•  surrogates closer to the clients
Existing resources
•  private clouds, PCs, specialized processors, other network

devices in the local environment

Networking

Mobility means wirelessness
•  Sparse connectivity
•  Multitude and heterogeneity of network stacks
•  Energy consumption of antenna amplifier
•  Long RTTs, packet loss

Some Resolutions
•  Network stack abstractions
•  Traffic shaping
•  Route selection (a.k.a. data offloading)

Other Considerations

Code Transfer
•  application caching at surrogate
•  application libraries
Data Transfer Optimizations
•  transfer deltas
•  delay tolerance of data
Service Discovery
•  mainstream users don’t want to configure IP addresses
Trust And Security
•  how to make offloading trustable?

ThinkAir Offloading Framework
Deutsche Telekom (modifications in Aalto)

Method-level offloading framework
•  runs on default Dalvik VM, no modifications needed
•  modifications necessary to application code

Client-server networking paradigm
•  target application acts as an offloading client
•  surrogate is a server application, runs inside an unmodified

Dalvik VM
•  automatic application code transfer

Kosta et al., 2011
Unleashing the Power of Mobile Cloud Computing using ThinkAir

What about mainstream applications?

Existing promises
•  MAUI: 45% energy savings for Chess AI
•  CloneCloud: 20x speedup and energy savings for a large

image search
•  MACS (2012): more than 20x speedup in face recognition

from a video

Biased measurements?
•  Tailored application sets in previous literature

Effect of communication energy consumption
•  Could offloading be utilized for traffic shaping?

Experiences And Results
Communication Offloading with ThinkAir

We offloaded successfully!
•  ThinkAir handled the necessary procedures for

execution migration
•  some advantage with WLAN
…but…
•  We did modify the application for custom serialization
•  3G RTT nullified the advantages
•  Debugging is hard: Errors may even be unnoticed

Saarinen at al., 2012
Can offloading save energy for popular apps?

Method Migratability

Definition of migratability (simplified)
•  Method does not access physical resources of the mobile

device.

Real-life migratability
•  15% of all methods in 16 different open-source applications

Application Developer must be

an active part of offloading process.

Saarinen at al., 2012
Can offloading save energy for popular apps?

Some Cool Ideas

Popular services brought nearby
•  e.g. many subscribers for a newspaper on an airplane à a

clever proxy that retrieves personalized content
Collaborative services
•  Many users with a common goal in vicinity à ad-hoc

collaboration for reaching the goal
Universal application execution
•  one application with two different interfaces for supporting

many terminals (e.g. desktop computer, mobile phone)
•  “transfer” of live process with help of offloading

Ongoing Research (late 2011)

Cuckoo: dynamic decision-making
•  MACS at RWTH Aachen (2012)

MAUI: state transfer optimization

CloneCloud
•  Hardware accesses
•  Advanced concurrency
•  Trust

A few days ago: TransOS
•  an operating system in the cloud?

Summary
Theoretical Aspects

Mobile Computation Offloading:
transfer of computation outside the mobile device
•  related terminology is emerging while research continues
MCO differs from traditional distributed computing
•  opportunistic operation
•  low-quality networking environments
Offloading brings many potential benefits
•  energy saving, performance, reliability, ease for the software

developers, better exploitation of contextual information...
Offloading has also many other opportunities
•  business opportunities, collaborative local services, universal

application execution…

Summary
Current State of Art

•  Today’s frameworks deal with the essentials.
•  There is no publically available offloading framework.
•  Current frameworks seem to be more or less for academic

purposes.

The big question:

What kind of mainstream application
would benefit from offloading?

Thank you!
Any questions or comments?

Matti Kemppainen
kemppi@cs.hut.fi

17.10.2012
Otaniemi, Espoo

T-110.5121
Mobile Cloud Computing

